Guidelines

European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 1. epidemiology, diagnostics and prevention

Alexander J. Stratigos a,*, Claus Garbe b, Clio Dessinioti a, Celeste Lebbe c, Veronique Bataille d, Lars Bastholt e, Brigitte Dreno f, Maria Concetta Fargnoli g, Ana Maria Forsea h, Cecille Frenard f, Catherine A. Harwood i, Axel Hauschild j, Christoph Hoeller k, Lidija Kandolf-Sekulovic l, R. Kaufmann m, Nicole WJ. Kelleners-Smeets n, Josep Malvehy p, Veronique del Marmol q, Mark R. Middleton r, David Moreno-Ramirez s, Giovanni Pellecani t, Ketty Peris u,v, Philippe Saiag w, Marieke H.J. van den Beukema-van Everdingen o, Ricardo Vieira x, Iris Zalaudek y, Alexander M.M. Eggermont z, Jean-Jacques Grob aa On behalf of the European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organization for Research and Treatment of Cancer (EORTC)

a 1st Department of Dermatology-Venereology, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Athens, Greece
b Centre for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
c Université de Paris, INSERM U976, AP-HP, Dermatology Department, Saint Louis Hospital, Paris, France
d Mount Vernon Cancer Centre, East and North NHS Trust, Northwood, UK
e Department of Oncology, Odense University Hospital, Odense, Denmark
f Dermatology Department, CHU Nantes, Université Nantes, CIC 1413, CRCINA Inserm U1232, Nantes, France
g Dermatology = Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
h Carol Davila University of Medicine and Pharmacy Bucharest, Department of Oncologic Dermatology, Elias University Hospital Bucharest, Romania
i Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
j Department of Dermatology, University Hospital (UKSH), Kiel, Germany
k Department of Dermatology, Medical University of Vienna, Austria
l Department of Dermatology, Medical Faculty, Military Medical Academy, Belgrade, Serbia
m Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany

* Corresponding author: 1st Department of Dermatology-Venereology, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Athens, Greece.
E-mail address: alstr2al@gmail.com (A.J. Stratigos).

https://doi.org/10.1016/j.ejca.2020.01.007
0959-8049/© 2020 Elsevier Ltd. All rights reserved.
Invasive cutaneous squamous cell carcinoma (cSCC) is one of the most common cancers in the white populations, accounting for 20% of all cutaneous malignancies. Factors implicated in cSCC etiopathogenesis include ultraviolet radiation exposure and chronic photaging, age, male sex, immunosuppression, smoking and genetic factors. A collaboration of multidisciplinary experts from the European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organisation of Research and Treatment of Cancer (EORTC) was formed to update recommendations on cSCC classification, diagnosis, risk stratification, staging and prevention, based on current literature, staging systems and expert consensus. Common cSCCs are typically indolent tumors, and most have a good prognosis with 5-year cure rates of greater than 90%, and a low rate of metastases (<4%). Further risk stratification into low-risk or high-risk common primary cSCC is recommended based on proposed high-risk factors. Advanced cSCC is classified as locally advanced (lacSCC), and metastatic (mcSCC) including locoregional metastatic or distant metastatic cSCC. Current systems used for staging include the American Joint Committee on Cancer (AJCC) 8th edition, the Union for International Cancer Control (UICC) 8th edition, and Brigham and Women’s Hospital (BWH) system. Physical examination for all cSCCs should include total body skin examination and clinical palpation of lymph nodes, especially of the draining basins. Radiologic imaging such as ultrasound of the regional lymph nodes, magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography –computed tomography (PET-CT) scans are recommended for staging of high-risk cSCC. Sentinel lymph node biopsy is currently not recommended. Nicotinamide, oral retinoids, and topical 5-FU have been used for the chemoprevention of subsequent cSCCs in high-risk patients but are not routinely recommended. Education about sun protection measures including reducing sun exposure, use of protective clothing, regular use of sunscreens and avoidance of artificial tanning, is recommended.

© 2020 Elsevier Ltd. All rights reserved.

1. Information about the guidelines

1.1. Societies in charge

These Guidelines were developed on behalf of the European Dermatology Forum (EDF), as decided at the EDF meeting in January 2017. The European Association of Dermato-Oncology (EADO) coordinated the authors’ contributions within its Guideline Program in Oncology (GPO). The editors and coordinators responsible for the formulation of the guideline are: Alexander J. Stratigos, Claus Garbe and Jean-Jacques
Grob. In order to guarantee the interdisciplinary character of these guidelines, they were developed in cooperation with the European Organisation for Research and Treatment of Cancer (EORTC). Twenty-eight experts from 13 countries, all of whom were delegates of national and/or international medical societies, collaborated in the development of these guidelines.

1.2. Financing of these guidelines

The guidelines were supported by grants from the EADO for the guideline meetings. The authors did this work on a voluntary basis and did not receive any honorarium or reimbursements. Guidelines development group members stated their conflicts of interest in the relevant section.

1.3. Disclaimer

The field of medicine is subject to a continuous development process. This entails that all statements, especially with regard to diagnostic and therapeutic procedures, can only reflect scientific knowledge current at the time of printing these guidelines. Utmost care was applied with respect to stated therapeutic recommendations and the selection as well as dosage of drugs. Nevertheless, users are prompted to use package inserts and expert information by the manufacturers as backup and, in case of doubt, consult a specialist. Pursuant to public interest, questionable discrepancies shall be communicated to the GPO editors. The user remains responsible for all diagnostic and therapeutic applications, medications, and doses. Registered trademarks (protected product names) are not specified in these guidelines. From the absence of respective indications, it may thus not be inferred that product names are unprotected.

This work is protected by copyrights in all its parts. Any utilisation outside the provision of the copyright act without the written permission by the GPO of the EADO is prohibited and punishable by law. No part of this work may be reproduced in any way without written permission by the GPO. This applies, in particular, to duplications, translations, microfilming, and the storage, application, and utilisation in electronic systems, intranets, and internet.

1.4. Scope

These guidelines were written in order to assist clinicians in treating patients with invasive cutaneous squamous cell carcinoma (cSCC). This update was initiated mainly due to advances in systemic treatments and a new AJCC staging system for patients with cSCC, which justify a newer approach to definitions, risk classification and multidisciplinary therapeutic strategies. The use of these guidelines in clinical routine should improve patient care.

1.5. Target population

The present guidelines are published in two parts that both form integral parts of the guidelines: Part 1 contains recommendations with regard to the definitions of cSCC, epidemiology, etiopathogenesis, diagnosis, risk classification, staging and prevention, and Part 2 contains recommendations on treatment, supportive care, patient education and follow-up for patients with cSCC, addressing in detail all different subgroups of cSCC, from the “low-risk primary”, “high-risk primary”, to “locally advanced” and “metastatic” tumors.

1.6. Objectives and formulation of questions

The guidelines are produced primarily for those clinicians who are caring for patients with invasive cSCC. We focus on invasive cSCC (hereafter cSCC), excluding the early intra-epidermal SCC-like actinic keratoses (AK), Bowen’s disease, and mucosal SCCs, such as those located in the genital area, or those in the labial-buccal-nasal area, which are often mixed with cSCC under the label of ‘head and neck’ tumors. Particular emphasis is given to the definitions of cSCC, the diagnosis, risk classification, updated staging systems and treatment modalities. Patient education and prevention issues are also addressed. Formulation of clear sections has been made to support clinicians in their practice.

1.7. Audience and period of validity

This set of guidelines will assist healthcare providers in managing their patients according to the current standards of care and evidence-based medicine. It is not intended to replace accepted national guidelines. The guidelines published here reflect the best published data available at the time the report was prepared. Caution should be exercised in interpreting the data; the results of future studies may modify the conclusions or recommendations in this report. In addition, it may be necessary to deviate from these guidelines for individual patients or under special circumstances. Just as adherence to the guidelines may not constitute defence against a claim of negligence (malpractice), deviation from them should not necessarily be deemed negligent. These guidelines will require updating approximately every 2 years (expiration date: December 2021) but advances in medical sciences may demand an earlier update.

1.8. Principles of methodology

The European Interdisciplinary Guidelines on invasive squamous cell carcinoma of the skin are written as a uniform text and then published in two separate but integral parts: Part 1 on definitions, epidemiology, etiopathogenesis, diagnosis, risk classification, staging and prevention and Part 2 on treatments, supportive

Please cite this article as: Stratigos AJ et al., European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 1. epidemiology, diagnostics and prevention, European Journal of Cancer, https://doi.org/10.1016/j.ejca.2020.01.007
care, patient education and follow-up (Stratigos et al., 2020).

De novo literature search was conducted by the authors by Medline search in English language publications with last search date on July 20, 2019. Search terms included: ‘cutaneous squamous cell carcinoma’, ‘squamous cell carcinoma’, and ‘advanced, locally advanced, low-risk, high-risk common primary cSCC, metastatic cSCC, metastatic cSCC’. These terms were combined with ‘diagnosis, prognosis, staging, imaging, prevention, chemoprevention, guidelines, treatment, surgical excision, radiotherapy, adjuvant, systemic, anti-PD-1 antibody, cemiplimab, pembrolizumab, chemotherapy, cetuximab, EGFR-inhibitors, clinical trials, follow up, patient education’. The references cited in selected papers were also searched for further relevant publications. The methodology of these updated guidelines was based on the standards of the Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument [5].

Recommendations are based on the level of best quality available evidence and good clinical practice (GCP).

The levels of evidence were graded according to the Oxford classification (Table 1) [6]. The grades of recommendation were classified as follows:

B: Recommendation. Syntax: ‘should’.
C: Weak recommendation. Syntax: ‘may/can’.
X: Should not be recommended.
0: Recommendation pending. Currently not available or not sufficient evidence to make a recommendation in favour or against.

Expert consensus was provided wherever adequate evidence is not available.

1.9. Consensus building process

The consensus building process was conducted as follows: In a first-round medical experts who participated in their national guideline development processes were involved in producing an initial draft. In a second round, the European Organisation for Research and Treatment of Cancer (EORTC) selected experts from different specialties to contribute to these guidelines. A consensus meeting was held in Athens, Greece, on September 6th and 7th, 2019 with final outcomes: (1) the approval of the text and (2) a consensus rate of agreement of at least 80%, for recommendations provided in structured boxes and the figure. Voting of the recommendations included the selection of ‘Agree’, ‘Disagree’ or ‘Abstention’ vote, and the possibility of providing comments in case of disagree/abstention. Consensus voting on recommendations and finalisation of the draft was conducted among coauthors through emailing between Sept 20th and October 30th, 2019.

There were two recommendations that had a lower-than-80% consensus rate: the recommendation for ‘Imaging for staging’ and the figure for staging. Comments were received from coauthors, the recommendations were revised, and a second round of voting was conducted for these two recommendations.

2. Definitions of cSCC

Cutaneous SCC is a common skin cancer characterised by the malignant proliferation of epidermal keratinocytes and it is classified as a keratinocyte carcinoma together with basal cell carcinoma. [7]. It is distinguished in \textit{in situ} (Bowen’s disease) and invasive form. Cutaneous SCCs originate from a proliferation of keratinocytes, and invasive cSCC is probably often the ultimate step of a long lasting intraepidermal dysplasia. [8,9]. These guidelines focus on invasive cSCC (cSCC).

Depending on the extension of the disease, cSCC is distinguished as common primary, by far the most frequent, and advanced cSCC. Common primary cSCCs are non-metastatic cSCC, usually easy to treat, which can be further classified as low-risk or high-risk, depending on the risk of recurrence. Advanced cSCC is classified as locally advanced (lacSCC), or metastatic (mcSCC) including locoregional metastatic or distant metastatic cSCC, respectively.

LacSCC shall be defined as non-metastatic cSCC, not amenable to either surgery or radiotherapy with reasonable hope for cure, because of multiple recurrences, large extension, bone erosion or invasion, or deep infiltration beyond subcutaneous tissue into muscle or along nerves, or else tumors in which curative resection would result in unacceptable complications, morbidity or deformity [10–12]. This corresponds to unresectable T3/T4 (tumor invading deep structures) according to the 8th edition AJCC or UICC staging classification [13,14].

McSCC includes locoregional metastatic cSCC with in-transit metastases or metastasis to regional lymph nodes, or distant metastatic cSCC requiring systemic treatments. cSCC with regional nodal metastasis corresponds to stage III or IV according to the 8th edition AJCC or UICC staging classification. Metastatic cSCC...
<table>
<thead>
<tr>
<th>Question</th>
<th>Step 1 (Level 1a)</th>
<th>Step 2 (Level 2a)</th>
<th>Step 3 (Level 3a)</th>
<th>Step 4 (Level 4a)</th>
<th>Step 5 (Level 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How common is the problem?</td>
<td>Local and current random sample surveys (or censuses)</td>
<td>Systematic review of surveys that allow matching to local circumstancesb</td>
<td>Local non-random samplec</td>
<td>Case-seriesd</td>
<td>n/a</td>
</tr>
<tr>
<td>Is this diagnostic or monitoring test accurate? (Diagnosis)</td>
<td>Systematic review of cross-sectional studies with consistently applied reference standard and blinding</td>
<td>Individual cross-sectional studies with consistently applied reference standard and blinding</td>
<td>Non-consecutive studies, or studies without consistently applied reference standardsb</td>
<td>Case-control studies, or "poor or non-independent reference standardb</td>
<td>Mechanism-based reasoning</td>
</tr>
<tr>
<td>What will happen if we do not add a therapy? (Prognosis)</td>
<td>Systematic review of inception cohort studies</td>
<td>Inception cohort studies</td>
<td>Cohort study or control arm of randomised triale</td>
<td>Case-series or case-control studies, or poor-quality prognostic cohort studyb</td>
<td>n/a</td>
</tr>
<tr>
<td>Does this intervention help? (Treatment Benefits)</td>
<td>Systematic review of randomised trials or n-of-1 trials</td>
<td>Randomized trial or observational study with dramatic effect</td>
<td>Non-randomized controlled cohort/follow-up studyb</td>
<td>Case-series, case-control studies, or historically controlled studiesb</td>
<td>Mechanism-based reasoning</td>
</tr>
<tr>
<td>What are the COMMON harms? (Treatment Harms)</td>
<td>Systematic review of randomised trials, systematic review of nested case–control studies, n- of-1 trial with the patient you are raising the question about, or observational study with dramatic effect</td>
<td>Individual randomised trial or (exceptionally) observational study with dramatic effect</td>
<td>Non-randomized controlled cohort/follow-up study (post-marketing surveillance) provided there are sufficient numbers to rule out a common harm. (For long-term harms the duration of follow-up must be sufficient.)b</td>
<td>Case-series, case–control, or historically controlled studiesb</td>
<td>Mechanism-based reasoning</td>
</tr>
<tr>
<td>What are the RARE harms? (Treatment Harms)</td>
<td>Systematic review of randomised trials or n-of-1 trial</td>
<td>Randomized trial or (exceptionally) observational study with dramatic effect</td>
<td>Non-randomized controlled cohort/follow-up studyb</td>
<td>Case-series, case–control, or historically controlled studiesb</td>
<td>Mechanism-based reasoning</td>
</tr>
<tr>
<td>Is this (early detection) test worthwhile? (Screening)</td>
<td>Systematic review of randomised trials</td>
<td>Randomized trial</td>
<td>Non-randomized controlled cohort/follow-up studyb</td>
<td>Case-series, case–control, or historically controlled studiesb</td>
<td>Mechanism-based reasoning</td>
</tr>
</tbody>
</table>

a Level may be graded down on the basis of study quality, imprecision, indirectness (study PICO does not match questions PICO), because of inconsistency between studies, or because the absolute effect size is very small; Level may be graded up if there is a large or very large effect size.

b As always, a systematic review is generally better than an individual study.
with distant metastasis corresponds to stage IV. The presence of in-transit metastases is not included in the 8th edition AJCC/UICC staging systems.

3. Epidemiology

cSCC is the second most common form of skin cancer, accounting for 20% of keratinocyte carcinomas [7,16]. Ratios of BCC to cSCC range from 2 to 4:1 [16,17]. Most primary cSCC (80%–90%) are located on the head and neck [18]. Reliable population-based cSCC incidence data are limited, sometimes flawed by inclusion of actinic keratosis and in situ SCC, but indicate that rates are increasing in most white populations globally [17,19] and are predicted to continue to increase [19–22].

International incidence data are presented in Table 2 [23–30]. In Australians with a white sun sensitive skin, incidence is rising, although this is not apparent in the population overall because of changes in the proportions of low risk individuals with pigmented skin [31]. Rates increase with age, male sex (SIR, 2.1; 95% confidence interval (CI), 2.06–2.14) and low latitude. Multiplicity is strongly correlated with age [23]. In the UK, between 2013 and 2015, 62.7% of cSCC arose in men (median age 80 years). The mean annual percentage increase was 5% between 2013 and 2015 [25,26]. In Norway, age-adjusted incidence rates increased nine-fold in females and six-fold in males from 1963 to 2011, particularly in the age group 70–79 years [27]. Data from the Swedish Cancer Registry showed higher incidence for populations at the same latitude compared to those resident in coastal areas where hours of sunshine are higher than inland areas [32]. Age-adjusted cSCC incidence data from the northern latitude Rochester Epidemiology Project (USA) reported a 263% increase between 1976–1984 and 2000–2010 and a disproportionate increase in women and people under 40 years [30].

Much of the challenge in obtaining accurate incidence data is related to inconsistent cSCC registration practices in many countries: high incidence, multiplicity and low mortality contribute to a tendency to poor ascertainment by cancer registries in which frequently only the first diagnosis of cSCC is recorded, if at all [19,25]. A particularly important consequence is that the associated public health burden of cSCC is substantially underestimated [16,17,20,29,33].

3.1. Prognosis

Common primary cSCC are typically indolent tumors, rarely giving rise to metastasis, when they are treated early and correctly. Most cSCC tumors have a very good prognosis, with 5-year cure rates of greater than 90% [34]. The rate of recurrence was reported to be 4.6% in a large single-centre study of more than 900 patients with cSCC followed for approximately 10 years, 3.7% for nodal disease and 2.1% for disease-specific death [35]. The rate of local recurrence was 3% in a prospective study of 615 patients with surgically resected cSCC, with a 4% rate of metastases, after a median follow up of 43 months [36]. In a large cohort study in the UK, the recurrence rate was 2.7%, and the metastasis rate was 1.2% of which 85% were metastases from head and neck cSCCs [37].

The most recent European data on metastatic risk came from the UK National Cancer Registration and Analysis Service (NCRAS): cumulative incidence of locoregional or distant metastasis after a median follow up of 15.2 months was 2.1% (1.1% in women, 2.4% in
men) in 2013–15. Most mcSCC (85.2%) were diagnosed within 2 years from the primary cSCC. For most patients with mcSCC, the site of metastasis was the head and neck or parotid lymph nodes (73.6%). Risk increased with age, in males, in patients with immunosuppression, in higher deprivation quintiles, and location on the ear and lip [25].

Immunosuppression in patients with cSCC may include human immunodeficiency virus (HIV) infection, solid organ transplant, hematopoietic stem cell transplant, or chronic lymphocytic leukemia (CLL) [38]. Several studies have shown worse outcomes for cSCC in immunosuppressed patients compared to immunocompetent patients [39,40]. In immunosuppressed patients, locoregional recurrence was more common [39], whereas the risk of metastatic cSCC at least doubled [25] and outcomes for advanced disease were significantly worse [41]. Mortality rates of 494 per 100,000 were reported for the U.S. transplant population [42]; higher risk of recurrence, nodal metastasis and death is also reported in CLL [43–45] and survival after nodal disease in immunosuppressed individuals is significantly reduced [41].

Mortality rates of cSCC are not well documented [17]. A study in the Cancer Registry of Norway for the period from 2000 to 2011, reported five-year relative survival rates for localised cSCC of 88% in women and 82% in men, and of 64% in women and 51% in men for advanced cSCC [27]. A prospective study in 2149 cSCC (1434 patients) reported 2.8% disease-specific death after a median follow-up of 36.5 months [46].

4. Etiopathogenesis

Beside ultraviolet radiation (UVR) exposure (sun exposure and use of tanning beds [47]), which is by far the most important causal factor for cSCC, some others have been implicated such as immunosuppression, BRAF inhibitor (BRAFi) single agent therapy, β-HPV subtypes [48,49] and smoking [50,51].

The main carcinogen for cSCC development is UVR exposure. While most cSCCs will arise in the context of AKs and in patients with chronic photoaging, the rate of transformation of clinically evident AKs into cSCC is very low, at least in a few years period of follow-up (less than 1/1000 per year during a 5-year follow up) [52–54]. Available evidence indicates that incidence rates are consistently highest in fair-skinned populations in geographic locations with high ambient UV exposure; are higher among men than women; increase markedly with age — 80% occur in people over 60, probably because of the driving role of cumulative sun exposure, which increases with age; increase with decreasing deprivation; are more common and have worse prognosis with immunosuppression [17,19,24,25,55].

Markedly increased rates of cSCC have been reported in organ transplant patients [56] and in patients with chronic lymphocytic leukaemia (CLL) [45] or HIV [57]. Risk was increased by 9 to 18-fold in Danish and US haematopoietic stem cell transplant recipients compared with the general population [58,59]. In a US cohort, HIV patients with CD4 count<200 cells/ml had a 2.2 times increased risk compared to HIV-uninfected individuals for subsequent cSCC after a first cSCC [60].

BRAFi monotherapy with vemurafenib, dabrafenib or encorafenib in patients with metastatic melanoma, has been shown to induce cSCC at higher risk compared to combined BRAF/MEK inhibitors [61]. The mechanism of cSCC development is proposed to be hyperproliferation of keratinocytes due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in wild-type BRAF cells, particularly in the presence of oncogenic RAS mutations [62–64].

The development of cSCC during vismodegib (hedgehog pathway inhibitor) treatment in patients with locally advanced or metastatic BCC has also been reported [65,66].

Photosensitising thiazide antihypertensives have been recently associated with the risk of cSCC development [67,68], however causality has not been substantiated. A meta-analysis by Gandini et al. reported no association between thiazide diuretics and cSCC [69]. While a positive association was reported in the meta-analysis of Tang et al., there was no association noted between thiazide use and cSCC risk when only studies that had accounted for sun exposure were included [70].

4.1. Molecular pathogenesis

cSCCs are complex genetic tumors with a high mutation rate [71–73]. Most cSCCs carry a UV mutation signature with characteristic C > T or CC > TT dinucleotide mutations, although these may in part be passenger mutations also found in surrounding photoaged skin [74]. Genes altered in UV-induced SCC include TP53, CDKN2A involved in cell cycle control, NOTCH1 and NOTCH2, the epigenetic regulators KMT2C, KMT2D, TET2 and mutations of TGFβ receptors leading to their inactivation [72,73,75]. Genetic alterations that may be targeted with treatments are infrequent but include PIK3CA, fibroblast growth factor receptor 3 (FGFR3), BRAF, and epidermal growth factor receptor (EGFR) [76]. Genetic signatures have been linked to azathioprine exposure in SCC arising in immunosuppressed patients [72] and to hyperactivity of endogenous cytidine deaminases (APOBEC mutation signature) in cSCC in recessive epidermolysis bullosa patients and possibly in other cSCC arising on burn scars or on chronic ulcers [77].

Genome-wide association studies have highlighted single nucleotide polymorphisms associated with cSCC risk, including MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4, BNC2, the metastasis suppressor gene CADM1, AHR, a transcription factor that regulates cell proliferation, and SEC16A involved in secretion and cellular
proliferation [78–81]. Microenvironment is implicated in cSCC, with a role for human leukocyte antigen (HLA) variants [82] and the programmed cell death protein 1/programmed cell death ligand-1 (PD-1/PD-L1) axis. PD-L1 expression was detected in around 26% of primary cSCC [83–85] and up to 50% of metastatic lesions [84,85]. Hereditary syndromes that increase cSCC risk include xeroderma pigmentosum, epidermolysis bullosa, ocucutaneous albinism and Fanconi anaemia and Lynch syndrome/Muir Torre syndrome [7].

5. Diagnostic approach of primary cSCC

5.1. Clinical diagnosis

cSCC may have different clinical presentations depending on tumor size, differentiation, pigmentation, location and skin type. It most commonly arises in sun exposed sites (head, neck, upper-limb extremities, dorsum of the hands). One of the strongest predictors of development in previously unaffected individuals is the presence of actinic keratoses and these lesions are a marker of risk rather than precursor lesions as the rate of transformation of individual solar keratoses is very low [53,54].

In its early minimally invasive phase, cSCC is usually a small flesh-coloured plaque or papule, sometimes with a scaly/hyperkeratotic surface, not easily distinguishable from a hyperplastic/hyperkeratotic AK or in situ SCC. It enlarges over time with crusting and ulceration. There is usually some induration upon palpation. cSCC can be pigmented, presenting a light to dark brown colour. Well-differentiated cSCCs are usually easy to diagnose hyperkeratotic and verrucous tumors, sometimes more or less crateriform. Poorly differentiated cSCCs appear as red fleshy non-keratotic tumors with frequent ulceration hardly distinguishable from other tumors like amelanotic melanoma, cutaneous metastases or Merkel cell carcinoma. cSCC may be asymptomatic, and pain may be generated when pressure is applied to the lesion.

Keratoacanthoma (well-differentiated cSCC, keratoacanthoma-like SCC) is a cSCC with a distinct clinical behaviour including fast growth (a few days or weeks) from normal skin, spontaneous regression and a few distinctive histological criteria [86,87]. Keratoacanthoma is a solitary symmetrical dome-shaped nodule capped with keratin, usually arising on sun-exposed skin areas. Keratoacanthoma can grow to a very large size [86], which is not per se a high-risk prognostic factor provided that clinical and histological features are highly suggestive of keratoacanthoma, especially considering the good prognostic outcomes reported in a meta-analysis of keratoacanthoma cases [87].

LacSCC may result either from multiple relapses after incorrect initial management of common primary SCC or directly from highly biologically aggressive SCC. This results in larger tumors with induration including the surrounding skin and possible invasion of regional anatomic sites such as the orbitae or sinuses with pain and associated symptoms. Actual tumor extent, infiltration and depth of invasion are not really predictable by simple clinical examination. In meSCC, the tumor may present with in-transit, nodal or distant metastasis. Clinical examination of the draining basins and imaging in addition to clinical diagnosis has to be considered for staging in high-risk cSCC when metastases need to be ruled out.

The clinical differential diagnosis of typical cases is usually easy. Early cases may be differentiated from inflamed seborrheic keratosis, high-grade AK, or keratotic basal cell carcinoma. Less differentiated cases may be confused with amelanotic melanoma, or with rarer neoplasms such as atypical fibroxanthoma, Merkel cell carcinoma or adnexal tumors among others.

Adequate documentation of the cutaneous tumor with measurement of the maximum clinical diameter in the patient’s medical file is necessary prior to biopsy and surgery. Recording of symptoms and photography is recommended prior to biopsy. Recording the clinical diameter is important as this is a critical parameter in risk classification and staging of cSCC and not the size recorded in the histologic report, which is usually altered due to sample-processing techniques.

5.2. Dermoscopy and other non-invasive techniques

Dermoscopy, although less frequently performed with non-pigmented than for pigmented lesions, may help in the differential diagnosis of equivocal cases, especially in particular situations, such as in minimally invasive cSCC or in pigmented forms, with the identification of the presence of glomerular-like vessels, clustered vessels, hairpin vessels, scale and alignment of dots and vessels. In keratinizing cSCC, dermoscopy may show structures associated with abnormal keratinization of the hair follicle and adnexal structures with white circles that are more frequent in lesions on the face, also correlating with well-differentiated tumors. [88]. In poorly differentiated cSCC, the presence of red colour, irregular/atypical vessels and the lack of white colour and scale/keratin are diagnostic dermoscopic criteria [89,90].

Other non-invasive techniques such as in-vivo Reflectance Confocal Microscopy (RCM) and Optical Coherence Tomography (OCT) have been used in limited case series but there is insufficient evidence for a routine diagnostic use at this point in time. Although RCM generates characteristics which have good histopathologic correlations (i.e. parakeratosis, atypical keratinocytes, and vascular alterations), the limited laser penetration frequently hampers the full-thickness examination of the tumor. Thus, there is insufficient evidence for a routine diagnostic use at this point in time. A possible role for RCM in clinical practice would be to...
differentiate cSCCs from BCCs [91–93]. OCT, in different modalities, provides vertical section of the tissue up to 1–2 mm in depth, and may thus help to separate in situ versus early invasive cSCC [94–96].

5.3. Histopathological diagnosis

The gold standard for the diagnosis of cSCC is histology. A biopsy or excision and histological confirmation should be performed in all clinically suspected cSCCs. A lower threshold for biopsy of suspicious lesions has been proposed for solid organ transplant recipients [97]. Depending on the size of the tumor and treatment approach, an incisional biopsy, i.e. incision or punch biopsy or an excisional biopsy of the entire lesion can be performed initially. Preoperatively, the longest clinical diameter of the lesion (including the peripheral rim of erythema) should be recorded and noted on the surgery report as it is part of further prognostic staging [98].

cSCCs consist of atypical epithelial tumor formations that extend beyond the epidermis into the underlying dermis. Like the cells of the stratum spinosum of the epidermis, the cells tend to cornify and horny pearls are formed [16 99]. cSCC may be classified according to the WHO classification of skin tumors (4th edition, 2018) [86] as presented in Table 3. Not yet included in the WHO classification is desmoplastic SCC with a high proportion of stroma and narrow cell strands, which grows markedly infiltrative, perineurally or perivascularly [100]. This type must be separated from the common primary SCC group and it is considered a high-risk histological subtype in the NCCN guidelines [2].

Clinical information to be noted on the biopsy as well as the excision requisition should include patient demographics, the location and the clinical diameter of the lesion as the latter is necessary for staging. The final histopathological report (after excision) should include histological risk factors that are relevant for the staging and prognosis of cSCC including the thickness, depth of invasion, the presence or absence of perineural invasion (PNI), the grade of differentiation and margins status and desmoplastic type. Additional useful histologic features may be recorded including the histological subtype, lymphovascular invasion and calibre of affected nerves with PNI if \(\geq 0.1 \) mm (Table 4). As in melanoma, the maximum vertical tumor thickness is measured in mm, from the granular layer of adjacent normal epidermis to the base of the tumor. The depth of invasion reports the invasion or not into the subcutaneous fat (Clark level V), or even below for more aggressive tumors. For PNI, there is need for standardization in reporting [101]. The histopathological subtypes that have been associated with higher risk for

<table>
<thead>
<tr>
<th>Table 3</th>
<th>WHO classification of skin tumors: SCC [86]..</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICD-O code</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma not otherwise specified</td>
<td>8070/3</td>
</tr>
<tr>
<td>Keraatoacanthoma (synonym: well-differentiated SCC)</td>
<td>8071/3</td>
</tr>
<tr>
<td>Acantholytic SCC</td>
<td>8075/3</td>
</tr>
<tr>
<td>Spindle cell SCC</td>
<td>8074/3</td>
</tr>
<tr>
<td>Verrucous SCC</td>
<td>8051/3</td>
</tr>
<tr>
<td>Clear cell SCC</td>
<td>8084/3</td>
</tr>
<tr>
<td>Other (uncommon) variants</td>
<td></td>
</tr>
<tr>
<td>SCC with sarcomatoid differentiation</td>
<td>8074/3</td>
</tr>
<tr>
<td>Lymphoepithelioma-like carcinoma</td>
<td>8082/3</td>
</tr>
<tr>
<td>Pseudovascular SCC</td>
<td>8074/3</td>
</tr>
<tr>
<td>SCC with osteoclast-like giant cells</td>
<td>8035/3</td>
</tr>
<tr>
<td>SCC in situ (Bowen disease)</td>
<td>8070/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Basic features included in the histopathological report of a cSCC diagnosis (modified from Refs. [1,186])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic subtype:</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Keratoacanthoma</td>
</tr>
<tr>
<td></td>
<td>Acantholytic</td>
</tr>
<tr>
<td></td>
<td>Spindle cell SCC</td>
</tr>
<tr>
<td></td>
<td>Verrucous</td>
</tr>
<tr>
<td>Degree of differentiation</td>
<td>Well differentiated</td>
</tr>
<tr>
<td></td>
<td>Moderately differentiated</td>
</tr>
<tr>
<td></td>
<td>Poorly differentiated</td>
</tr>
<tr>
<td>Tumor histological thickness*</td>
<td>..........mm</td>
</tr>
<tr>
<td>Invasion beyond subcutaneous fat</td>
<td>(\square) No (\square) Yes</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>(\square) No (\square) Yes</td>
</tr>
<tr>
<td></td>
<td>(\square) No (\square) Yes</td>
</tr>
<tr>
<td>Complete excision:</td>
<td>(\square) No (\square) Yes</td>
</tr>
<tr>
<td>Minimum lateral margin:</td>
<td>..........mm</td>
</tr>
<tr>
<td>Minimum deep margin:</td>
<td>..........mm</td>
</tr>
</tbody>
</table>

* Tumor thickness measured from the granular layer of adjacent normal epidermis to the base of the tumor (per 8th TNM classification for carcinomas of the skin).
local recurrence or metastases include desmoplastic, metaplastic (spindle cell), acantholytic (adenoid), or adenosquamous (showing mucin production) subtypes [2], and their presence is a NCCN high-risk criterion. The degree of differentiation may classify cSCC into well-differentiated subtypes with low metastatic potential and in poorly differentiated more aggressive subtypes [16]. The histopathology report should mention peripheral and deep margin status [2].

6. Prognostic factors for high-risk cSCC

All advanced SCCs, whether locally advanced or metastatic have become high-risk tumors by definition, although they may have started as low risk tumors initially undertreated. Indeed, a retrospective study from the German Dermatologic Cooperative Oncology Group (DeCOG) reported that in 190 patients with advanced cSCC, most patients (58%) had a primary tumor with a low T stage (T in situ, T1, T2) [102].

Assessment of the risk is thus particularly relevant for common cSCC to identify the few with a high-risk risk of local recurrence, or metastasis among all the other low-risk tumors. The risk factors may be classified as intrinsic (tumor-related) or extrinsic (patient- and physician-related). Studies reported various prognostic high-risk factors including the maximum clinical diameter (mm) of the tumor [35,36,103], histological thickness [36,46], tumor invasion level [35,103], the presence of desmoplasia [36,46,103], or poor differentiation, PNI, location [35,36], or immunosuppression [36,46].

Guidelines have proposed additional factors including rapid growth, poorly defined borders, site of previous radiotherapy, recurrence and positive margins [2,3]. The variability of the risk factors proposed is due to the variability of reported evidence. Retrospective studies usually include a small number and/or heterogeneous groups of patients and investigate different outcomes including local recurrence (LR), nodal metastasis (NM), distant metastasis, disease-specific survival (DSS), and overall survival (OS). Furthermore, the effect of risk factors may vary.

High-risk prognostic factors identified in meta-analyses, staging systems and updated guidelines are summarized in Table 5. A systematic review and meta-analysis in 2016 (36 studies) [15] reported that statistically significant risk factors for recurrence were Breslow tumor thickness >2 mm and >6 mm, invasion beyond subcutaneous fat, (PNI), tumor diameter >20 mm, location on the temple, and poor differentiation. Statistically significant risk factors for nodal metastasis were invasion beyond subcutaneous fat, Breslow >2 mm and >6 mm, diameter >20 mm, poor differentiation, PNI, location on the temple, ear, or lip, and immunosuppression. Factors for disease-specific death were diameter >20 mm, poor differentiation, location on the ear or lip, invasion beyond subcutaneous fat and PNI. Tumor depth was associated with the highest risk of local recurrence and metastasis, while tumor diameter >20 mm was associated with the highest risk of disease-specific death (DSD). The quality of the reviewed literature was considered to be low-to-moderate [15] (Table 5).

The ascertainment of high-risk prognostic factors defining high-risk cSCC may have an impact on further management, with more aggressive surgical treatment and more regular follow up recommendations. A list of indicative high-risk factors with evidence-based data portending a higher risk of recurrence is proposed in Recommendation 4. These proposed high-risk factors include clinical features (tumor diameter, location, symptomatic PNI), histological features (thickness or deep invasion, poor differentiation, desmoplasia, PNI), radiologic features (radiological PNI, bone erosion) and immunosuppression. In addition, as shown in the BWH staging system, the combination of two or more high-risk factors (among poor differentiation, PNI, clinical diameter and invasion beyond subcutaneous tissue), significantly increases the risk of negative outcomes. In view of current gaps of knowledge on the precise risk of each factor individually, as well as on additional factors influencing this risk, it is recommended to consider the variations of patient- and tumor-related characteristics when assessing the level of overall prognostic risk.

The role of extrinsic risk factors is more difficult to study, but it is clear in the clinical practice, that many compromises in the management of early SCC, whether linked to patient requests to limit extent of surgery or to the physician’s wish to simplify treatment, are responsible for a number of complications. Positive margins correspond to residual tumor, which a priori has potential for recurrence. When initial removal is incomplete, cSCC is more likely to recur, mostly locally and less frequently in regional lymph nodes [36,37]. A retrospective study in patients with high-risk cSCC

Please cite this article as: Stratigos AJ et al., European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part I. epidemiology, diagnostics and prevention, European Journal of Cancer, https://doi.org/10.1016/j.ejca.2020.01.007
Table 5
Prognostic high-risk factors for the primary tumor (T) classification of cSCC in up-to-date staging systems, guidelines and meta-analysis.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum clinical diameter</td>
<td>+ > 2 cm</td>
<td>+ > 2 cm</td>
<td>+ ≥ 2 cm</td>
<td>+ > 2 cm</td>
<td>≥ 2 cm area L</td>
<td>+b,c,d (>2 cm)</td>
<td>+ > 2 cm</td>
</tr>
<tr>
<td>Primary tumor site</td>
<td></td>
<td>+ ear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site of prior RT or chronic inflammatory process</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic clinical PNI</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurologic symptoms</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td>+ Poorly defined</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rapidly growing tumor</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Primary versus recurrent</td>
<td>+ Recurrent</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tumor histological risk factors</td>
<td></td>
<td></td>
<td>+ > 6 mm</td>
<td>+ > 6 mm</td>
<td>+ > 6 mm</td>
<td>+b,c,d (>2 mm and >6 mm)</td>
<td>+ > 6 mm</td>
</tr>
<tr>
<td>Invasion beyond subcutaneous fat</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Poor differentiation</td>
<td>+ (tumor cells in the nerve sheath of a nerve lying deeper than the dermis or measuring ≥0.1 mm or presenting with clinical or radiographic involvement of named nerves)</td>
<td>+</td>
<td>+ or desmoplastic</td>
<td>+</td>
<td>+b,c,d</td>
<td>+</td>
<td>+b,c,d</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>+ (tumor cells in the nerve sheath of a nerve measuring ≥0.1 mm)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+b,c,d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphatic, or vascular involvement</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Acantholytic (adenoid), adenosquamous (mucin production), desmoplastic, or metaphlastic (carcinosarcomatous) subtypes</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+ desmoplasia</td>
</tr>
<tr>
<td>Tumor imaging risk factors</td>
<td>Minor bone erosion</td>
<td>+</td>
<td>+</td>
<td>+ bone invasion</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Perineural invasion in</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

(continued on next page)
reported that the accuracy of risk factors for staging systems may be compromised by inadequate excision rather than intrinsic high-risk factors. In patients treated with Mohs surgery, only poor differentiation and invasion beyond the subcutaneous fat were associated with worse prognostic outcomes [104]. Recurrence is not included in this guideline as a high-risk factor for subsequent recurrence, considering that primary recurrence was a result of another underlying high-risk factor.

7. Staging systems for cSCC

Table 5 (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross cortical/bone marrow, skull base invasion and/or skull base foramen invasion</td>
<td>+</td>
<td>+</td>
<td></td>
<td>NS</td>
<td></td>
<td>EADO guidelines (2019 update)</td>
</tr>
</tbody>
</table>

Patient risk factors

Immunosuppression

BWH: Brigham and Women’s Hospital, NS: not studied.

Area H = ‘mask areas’ of face (central face, eyelids, eyebrows, periorbital, nose, lips [cutaneous and vermilion], chin, mandible, preauricular and postauricular skin/suksi, temple, ear), genitalia, hands, and feet, Area M = cheeks, forehead, scalp, neck, and precept. Area L = trunk and extremities (excluding hands, nail units, pretibia, ankles, feet).

*Included risk factors found to be strong independent prognostic predictors on multivariate analysis for at least 2 end-points (local recurrence, nodal metastasis, disease-specific death, all-cause death).

Risk for metastasis. The sign (+) indicates the inclusion of the risk factor.

b Risk for local recurrence.

c Risk for nodal metastasis.

d Risk for disease-specific death.

Recommendation 4. A list of indicative prognostic high-risk factors for recurrence for cSCC proposed by EDF-EADO-EORTC

- **Tumor- and patient-related/intrinsic high-risk factors**
- **Evidence-based recommendation**
- **Grade of recommendation: B**
- **Prognostic factors for considering a common primary cSCC as high-risk:**
 1. tumor diameter (>20 mm)
 2. localization on temple/ear/area face > 6 mm or invasion beyond subcutaneous fat
 3. thickness >6 mm or invasion beyond subcutaneous fat
 4. poor grade of differentiation
 5. desmoplasia
 6. microscopic, symptomatic or radiological PNI
 7. bone erosion
 8. immunosuppression

- **Level of evidence: 2**

- **Strength of consensus: 100%**

Please cite this article as: Stratigos AJ et al., European interdisciplinary guideline on invasive squamous cell carcinoma of the skin. Part 1. Epidemiology, Diagnostics and Prevention. European Journal of Cancer. https://doi.org/10.1016/j.ejca.2020.01.007
T classification, namely the Brigham and Women’s Hospital T classification system (BWH) [108] and the staging system used by Breuninger et al. (hereinafter referred to as the Breuninger system) [109].

The AJCC and UICC staging systems use the maximum clinical diameter of the primary tumor as the main high-risk feature for the T-category classification. Histological invasion (beyond subcutaneous fat) and the presence of PNI upstages the tumor to T3, and local extension to bone or foramen upstages to T4 [13]. The UICC uses a separate TNM classification for non-head and neck cSCC (Table 6) and head and neck cSCC (Table 7), while the AJCC has only been developed for head and neck cancers (Tables 7 and 8). The 8th edition AJCC staging system (AJCC8) was reported to perform better compared to the 7th edition [110]. However, AJCC8 needs further refinement, as T4 classification is rarely used because very few tumors meet the inclusion criteria and some T2 tumors may be associated with poor outcomes, as noted in cases of poorly differentiated tumors [110].

Another major limitation of the AJCC/UICC staging systems is the heterogeneity of stage III that includes both patients with lymph node metastasis and patients with primary cSCC only. AJCC8 adopts the nodal classification used for the mucosal SCC of the head and neck and there are reports of poor prognostic performance for nodal metastases [111–113].

The BWH classification system for the T stage, was described by Jambusaria-Pahlajani et al., in 2013, with the aim of better prognostic stratification of T2 of AJCC staging [108]. This system was based on a retrospective cohort study in a single academic institution based on a multivariate analysis and provides a quantifiable risk value according to the number of risk factors. Four risk factors were found to be strong independent prognostic predictors on multivariate analysis for at least 2 endpoints of interest: (1) poor differentiation, 2) PNI (of any calibre initially [108], and ≥0.1 mm in the modified BWH staging system [114]), 3) diameter ≥2 cm (in contrast to AJCC8 that uses a cut-off for diameter of >2 cm), and 4) invasion beyond subcutaneous tissue. T2 tumors are stratified into a low-risk T2a stage (with one of the above risk factors) with 16% of these patients accounting for all SCC-related events (recurrence, nodal metastasis and/or death) and a high-risk T2b with tumors combining 2–3 risk factors and accounting for 64% of all SCC-related events. T3 stage includes tumors that combine all 4 risk factors, as well as those with bone invasion [108,114]. In the study of Karia et al., BWH T2b/T3 tumors accounted for 70% of nodal metastases and 85% of disease-specific death [114].

Stage systems (AJCC 7th and 8th version, BWH and Breuninger) were compared in a population-based cohort study where the BWH and Breuninger systems performed best in identifying cSCC patients at high risk of metastases [115]. However it was commented that staging systems were still not optimal [116]. Among the 103 patients with metastasis, 37.9% fell in the BWH T2a and 39.8% in BWH T2b category, while with AJCC8 more than 60% fell in the T3 category [115]. AJCC8 was compared with the BWH classification system in the retrospective study of Ruiz et al. in 680 primary CSCC of the head and neck. Both systems had similar monotonicity and homogeneity, and the BWH system was reported to be superior in predicting NM and DSD but with no difference for LR and OS [117]. A retrospective study reported that the BWH system trended toward superior risk stratification relative to AJCC8 and UICC8 in 454 patients with cSCC and CLL [118].

These guidelines state that the AJCC8 is basically used for staging of patients with cSCC but is not satisfactory especially for advanced cSCC. The BWH staging system provides a quantifiable measure of risk for recurrence/lymph node metastasis for high-risk patients. It is clear from this detailed analysis of the currently available staging systems that a more practical, and relevant classification system with extensive validation in population-based or cohort studies is needed.
Table 7
pTNM pathological classification 8th edition for invasive cSCC of the head and neck used by the UICC and AJCC (2017) (excluding eyelid for UICC) [13,14].

UICC/AJCC TNM classification 8th edition

<table>
<thead>
<tr>
<th>pT – Primary Tumor</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>the same as TNM classification for non-head and neck used by UICC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- AJCC uses different definition for PNIa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pN – Regional Lymph Nodes</th>
<th>N0</th>
<th>N1</th>
<th>N2a</th>
<th>N2b</th>
<th>N2c</th>
<th>N3a</th>
<th>N3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional lymph nodes cannot be assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No regional lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis in a single ipsilateral lymph node ≤3 cm in greatest dimension without ENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis in single, ipsilateral lymph node ≤3 cm with ENE or,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3 cm and ≤6 cm in greatest dimension without ENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis in multiple ipsilateral lymph nodes, all ≤6 cm in greatest dimension without ENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis in bilateral or contralateral lymph node(s), all ≤6 cm in greatest dimension without ENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis in a lymph node >6 cm in greatest dimension without ENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis in a lymph node >3 cm in greatest dimension with ENE or,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or multiple ipsilateral, or any contralateral or bilateral node(s) with ENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M – Distant Metastasis</th>
<th>M0</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No distant metastasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENE: extranodal extension.

* In AJCC staging, perineural invasion for T3 classification is defined as tumour cells within the nerve sheath of a nerve lying deeper than the dermis or measuring 0.1 mm or larger in calibre, or presenting with clinical or radiographic involvement of tumour named nerves without skull base invasion or transgression. In UICC staging, perineural invasion for T3 classification is defined as clinical or radiographic involvement of named nerves without foramen or skull base invasion or transgression.

8. Staging work-up

Recommendations for the staging work-up of cSCC are shown in Fig. 1. Staging for recurrent cSCC is the same as for primary cSCC.

8.1. Physical examination

The diagnosis of cSCC should prompt a complete and careful physical examination including full-body skin examination and evaluation of the skin surface of the primary site for the presence of in-transit metastasis. Although the global risk of lymph node involvement is relatively low (as much as 5%) in invasive cSCC [35], all patients should undergo a careful clinical examination of the regional lymphatic basins via palpation [36,119]. This approach is sufficient in most low-risk cSCC.

In case of a clinically detected regional node, a fine needle aspiration cytology (FNAC) is recommended [120]. As an alternative to FNAC, ultrasound-guided core biopsy can be done [120]. (Fig. 1).

8.2. Nodal imaging

The need for staging procedures is not well established due to limited data for cSCC from the literature. In patients with common primary cSCC but without palpable lymph nodes imaging for staging is recommended only in patients with high-risk EADO factors.

Specification of the high-risk factors for imaging for detecting non-palpable nodal metastasis cannot be given, as the independent effect of high-risk factors has not been consistently reported. cSCC at higher risk for nodal metastasis according to staging systems include (but are not restricted to) AJCC8 T3/T4 and BWH T2b/T3 [117,121] (Fig. 1). Imaging methods like ultrasonography (US), computed tomography scan (CT) or positron emission tomography computed scan (PET-CT) are more sensitive than clinical examination [119,120,122]. There are limited data on the use of US for nodal metastasis for cSCC. A study of 44 patients with vulvar cSCC and suspected inguinal lymph node metastases, reported that US had a higher sensitivity and negative predictive value than CT, but lower specificity and positive predictive value [123]. A meta-analysis (17 studies) in patients with HNSCC (not cSCC) evaluated radiological imaging modalities including US, US-guided FNAC (USgFNAC), CT, MRI for the detection of lymph node metastases. USgFNAC showed the highest diagnostic odds ratios (DOR). US performed significantly better than MRI. Mean sensitivity of 87% was highest for US and specificity of 98% was highest for USgFNAC. However, there were only two studies addressing the evaluation of clinically N0 necks [122].

As lymph node metastases from cSCC may be more superficial and easier to detect on US than those from mucosal SCC, US may be a promising cost-effective minimally invasive staging modality for lymph nodes [119].

8.3. Imaging for lacSCC and distant metastasis

For staging of advanced cSCC, consultation in a multidisciplinary tumor board including a radiologist is mandatory to optimise the use of imaging modalities. In large cSCC or those with possible involvement of
underlying structures (orbital invasion, PNI), additional imaging tests, such as CT or MRI may be required to accurately assess the extent of the tumor and the presence of metastatic spread [107,124–126]. MRI is indicated for subtle intracranial disease, perineural spread [119], and imaging of tumor invasion in surrounding soft tissue [124,126]. CT scan and PET-CT are excellent techniques for the detection of metastatic involvement in distant organs [126] (Fig. 1).

One critical question is whether these radiological investigations help the therapeutic choice with an impact on the course of the disease. A retrospective study of radiologic imaging for high-stage BWH T2b and T3 cSCC in 45 patients reported mainly CT (79%), PET/CT or MRI, while there was no patient in this cohort that underwent imaging with ultrasound. Fifty-eight percent of imaging studies were performed for staging. Imaging changed management in 16 (33%) patients [121].

8.4. Sentinel lymph node biopsy (SLNB)

SLNB for patients with cSCC aims at the detection of occult nodal metastasis with the hope that their early management may improve prognosis. The systematic review of Navarrete-Dechent et al., in 2015 (16 studies), reported an overall positive rate of SLNB of 13.9% (32 of 231 patients) and false-negative rate of 4.6% in cSCC [130]. However, published studies include small number of patients and are heterogeneous [131–135]. The review of the literature by Allen et al., in 2014, reported a sensitivity of 79%, specificity of 100% and a negative predictive value of 96% [136]. The systematic review of Tejera-Vaquero et al., in 2018 (23 studies), reported positive SLNB in 8% of patients with cSCC, and found no studies reporting on predictors of SLN involvement or on the prognostic utility of SLN following adjustment for confounders. The meta-analysis of Schmitt et al., (19 studies, 130 patients with non-anogenital cSCC)
investigated the possibility of staging as a predictor of SLNB results. It identified microscopical involvement of the sentinel lymph node in 12.3% of patients, with all cases having tumors larger than 2 cm [137]. The risk of having a positive sentinel lymph node increased with the tumor stage and varied from 0% in AJCC T1 tumors to 60% in AJCC T4 tumors, and reached 7.1% (6/85) in BWH T2a, 29.4% (5/17) in BWH T2b and 50% (3/6) in BWH T3 stages [137]. The systematic review of Ross et al., mentioned that adverse events from SLNB were rarely reported in available studies [138].

In summary, SLNB cannot be currently recommended in invasive cSCC outside of the setting of clinical trials, since evidence is lacking about the real prognostic impact [130] and the characteristics of patients that could eventually benefit from this procedure are not well defined [136,138,139].

9. Primary and secondary prevention

Increased ambient UV exposure, both chronic or intermittent, professional or recreational sun exposure, in childhood and adulthood is associated with an increased risk for SCC. Public health interventions aiming to reduce UV exposure in the general population can be cost-effective in reducing the incidence and the associated medical costs of skin cancers, including SCC [142–144]. Behavioural interventions have been shown to be effective in increasing sun-protection behaviour, yet there is limited evidence on their effects on reducing sunburns and on improving skin cancer outcomes [145]. Multi-component strategies are considered as most effective for inducing changes in sun exposure behaviour, such as mass media campaigns, environments offering shaded areas, family-oriented behavioural counselling for the early childhood interventions and increasingly digitally delivered interventions [143,145–148]. Messages of sun avoidance between 10 am and 4 pm, wearing long-sleeved clothing, applying sunscreen and avoiding sunbed use, are useful but these interventions are struggling with strong social trends valuing pleasure associated with sunbathing and seaside vacations, and perception of suntan considered as aesthetic as well as a false marker of good health.

Regular use of sunscreen has been reported to be effective in reducing the incidence of SCC in experimental prospective studies [145,149,150]. However a recent meta-analysis did not support the correlation between sunscreen use and skin cancer reduction [151]. It is never too late and a clear message of strict photoprotection should be given to all patients who have already developed cSCC.

Specific situations may require specific preventive and screening measures: In 2010, the International Commission on non-ionizing radiation published a statement on necessary protection of workers against ultraviolet radiation, and in several countries keratinocyte cancer is officially recognized as an occupational disease in outdoor workers [152,153]. Risk-tailored screening procedures were developed for organ transplant recipients in Australia and the UK and similar efforts are under way in the USA [56,154,155].

10. Chemoprevention

Chemoprevention aims to prevent and reduce the risk of the development of new cSCC, especially for patients at...
risk of developing numerous and/or aggressive cSCC [163]. Systemic agents tested for the chemoprevention of cSCC include retinoids, nicotinamide and NSAIDS. Oral retinoids studied include acitretin and isotretinoin [163–166], which have shown effective in reducing the incidence of new cSCC at least during the duration of treatment in high-risk patients. They are, however, not routinely recommended, and their use in real life practice as chemopreventive agent is limited as there are significant drawbacks, especially because of their teratogenicity and the dose-related toxicities that are not often tolerated well by patients. [167,168] A systematic review of Chen et al., reported a small number of randomised controlled trials suggesting that acitretin may have a role in the management of solid organ transplant recipients with skin cancers, but the tolerability is a major limiting factor [168]. Nicotinamide is a water-soluble form of vitamin B3 (niacin). It may enhance repair of photodamaged DNA [163]. Systemic agents tested for the chemoprevention of risk of developing numerous and/or aggressive cSCC include retinoids, nicotinamide and NSAIDS. Oral retinoids studied include acitretin and isotretinoin [163–166], which have shown effective in reducing the incidence of new cSCC at least during the duration of treatment in high-risk patients. They are, however, not routinely recommended, and their use in real life practice as chemopreventive agent is limited as there are significant drawbacks, especially because of their teratogenicity and the dose-related toxicities that are not often tolerated well by patients. [167,168] A systematic review of Chen et al., reported a small number of randomised controlled trials suggesting that acitretin may have a role in the management of solid organ transplant recipients with skin cancers, but the tolerability is a major limiting factor [168]. Nicotinamide is a water-soluble form of vitamin B3 (niacin). It may enhance repair of photodamaged DNA [163]. Systemic agents tested for the chemoprevention of risk of developing numerous and/or aggressive cSCC include retinoids, nicotinamide and NSAIDS. Oral retinoids studied include acitretin and isotretinoin [163–166], which have shown effective in reducing the incidence of new cSCC at least during the duration of treatment in high-risk patients.

10.1. Immunosuppressants in organ transplant recipients

Adjustment or reduction of maintenance immunosuppressive therapy post-transplant may be necessary to reduce the risk of new cSCC and should always be discussed and done in close cooperation with the patient’s transplant specialists. Converting therapy from calcineurin inhibitors to newer agents such as mTOR inhibitors and from azathioprine to mycophenolate mofetil are strategies with proven efficiency in this regard [181–185] Converting to mTOR inhibitors after the first new cSCC is recommended. The limitations of mTOR inhibitors are adverse effects and higher risk of death through infectious or cardiovascular causes. These risks may be mitigated through administration of low-dose sirolimus, which maintained the reduced risk of keratinocyte carcinoma (HR 0.43, 95% CI 0.24–0.78), with a statistically non-significant risk of death (HR 1.07, 95% CI 0.81–1.41) [183].

Funding sources

The development of the current set of guidelines was supported solely by funds of the EADO which were used to mainly support the consensus meeting.

Declaration of competing interest

Dr. Stratigos reports personal fees and/or research support from Novartis, Roche, BMS, Abbvie, Sanofi, Regeneron, Genesis Pharma, outside the submitted work. Dr. Garbe reports personal fees from Amgen, personal fees from MSD, grants and personal fees from Novartis, grants and personal fees from NeraCare, grants and personal fees from BMS, personal fees from Pierre Fabre, personal fees from Philogen, grants and personal fees from Roche, grants and personal fees from Sanofi, outside the submitted work. Dr. Dessinioti has nothing to disclose. Dr. Lebbe reports grants and personal fees from Bristol-Myers Squibb, personal fees from MSD, personal fees from Novartis, personal fees from Amgen, grants and personal fees from Roche, personal fees from Avantis Medical Systems, personal fees from Pierre Fabre, personal fees from Pfizer, personal fees from Incyte, outside the submitted work. Dr. Bataille reports personal fees from Novartis, personal fees from Merck MSD, outside the submitted work. Dr. Bastholt reports personal fees for advisory board activity: BMS, Roche, Novartis, Pierre-Fabre, Astra Zeneca, InCyte, MSD/Merck, Bayer. Dr. Dréno reports grants and personal fees from BMS, personal fees from MSD, grants and personal fees from Roche, grants and personal fees
from Fabre, grants and personal fees from Sanofi, outside the submitted work. Dr. Fargnoli reports grants and personal fees from Almirall, grants and personal fees from Leo Pharma, personal fees from Janssen, grants and personal fees from Novartis, personal fees from Lilly, grants and personal fees from Sanofi, personal fees from UCB, grants and personal fees from Abbvie, personal fees from Celgene, personal fees from Pierre Fabre, grants and personal fees from Galderma, personal fees from Mylan, personal fees from Medac Pharma, personal fees from Roche, personal fees from Sun Pharma, outside the submitted work. Dr. Forsea reports scientific consultant/speaker fee from Novartis, Leo Pharma, Solarium, Pierre-Fabre, outside the submitted work. Dr. Frenard has nothing to disclose. Dr. Harwood reports institutional research grants and honoraria from Sanofi, Novartis, Merck, Pfizer, Galderma, MEDA, Almirall, Pellepharm, Leo Pharma, CERIES. Dr. Hauschild reports honoraria and/or research grants from: Almirall, BMS, Roche, Novartis, Pierre-Fabre, Sunpharma, MerckSerono, SanofiAventis, Regeneron, MSD/Merck, Phllogen, OncoSec outside the submitted work. Dr. Hoeller reports grants and personal fees from Amgen, personal fees from BMS, personal fees from MSD, personal fees from Novartis, personal fees from Pierre Fabre, personal fees from Roche, personal fees from Sanofi, personal fees from Incyte, outside the submitted work. Dr. Kandolf-Sekulovic reports speakers’ honoraria for Roche, Novartis, MSD, BMS, Janssen outside the submitted work. Dr. Kaufmann reports institutional research grants (clinical trials) from: AbbVie, Amgen, Biontech, BMS, Celgene, Galderma, Janssen, Leo, Lilly, Merck, MSD, Novartis, Pierre Fabre, Pfizer, Regeneron, Roche, Wyeth. Advisory Board and Honoraria from Merz, Roche, Novartis. Dr. Kellens-Smeets reports grants from Netherlands Organization for Health Research and Development, other from Janssen-Cilag, other from AbbVie, other from Galderma, outside the submitted work. Dr. Malvehy reports research grants (clinical trials) from: AbbVie, Amgen, Biocad, BioInvent, BiolineRx, BioInvent, Bonafide, BMS, Roche, Novartis, MerckSerono, Sanofi, Novartis, Sangamo, Sanofi, SanofiNovartis, SanofiAventis, Regeneron, MSD/Merck, Phllogen, OncoSec outside the submitted work. Dr. Middleton reports personal fees from MSD, personal fees from Novartis, personal fees from Pierre Fabre, personal fees from Roche, personal fees from Sanofi, personal fees from Incyte, outside the submitted work. Dr. Kelleners-Smeets reports honoraria from Roche, Novartis, Merck, Pfizer, Galderma, Meda, Almirall, Pellepharm, Leo Pharma, CERIES. Dr. Hauschild reports honoraria and/or research grants from: Almirall, BMS, Roche, Novartis, Pierre-Fabre, Sunpharma, MerckSerono, SanofiAventis, Regeneron, MSD/Merck, Phllogen, OncoSec outside the submitted work. Dr. Hoeller reports grants and personal fees from Amgen, personal fees from BMS, personal fees from MSD, personal fees from Novartis, personal fees from Pierre Fabre, personal fees from Roche, personal fees from Sanofi, personal fees from Incyte, outside the submitted work. Dr. Kandolf-Sekulovic reports speakers’ honoraria for Roche, Novartis, MSD, BMS, Janssen outside the submitted work. Dr. Kaufmann reports institutional research grants (clinical trials) from: AbbVie, Amgen, Biontech, BMS, Celgene, Galderma, Janssen, Leo, Lilly, Merck, MSD, Novartis, Pierre Fabre, Pfizer, Regeneron, Roche, Wyeth. Advisory Board and Honoraria from Merz, Roche, Novartis. Dr. Kellens-Smeets reports grants from Netherlands Organization for Health Research and Development, other from Janssen-Cilag, other from AbbVie, other from Galderma, outside the submitted work. Dr. Malvehy reports research grants from Almirall, ISDIN, Leo Pharma, Galderma, GSK, Cantabria; participation in advisory board meetings for Almirall, Sunpharma, BMS, Roche, Novartis, Pierre-Fabre. Dr. del Marmol reports personal fees from MSD, from BMS, personal fees from Sanofi, grants and personal fees from ABVIE, grants from Janssen, outside the submitted work. Dr. Middleton reports personal fees and/or grants from Amgen, Roche, Astrazeneca, GSK, Novartis, Immunocore, BMS, Eisai and Merck. Institutional funding from Millennium, Vertex, Pfizer, Regeneron, TCBiopharma, BiolineRx, Replimune, outside the submitted work. Dr. Moreno-Ramirez has nothing to disclose. Dr. Pellecani reports grants from university of modena and reggio emilia, during the conduct of the study; grants from novartis, grants and personal fees from almirall, grants from leo pharma, from null, outside the submitted work. Dr. Peris reports honoraria for advisory board and grants from AbbVie, Almirall, Biogen Celgene, Lilly, Galderma, Leo Pharma, Novartis, Roche, Sanofi, Sun Pharma, Sandoz outside the submitted work. Dr. Saaig reports honoraria for advisory board and grants from Amgen, Bristol-Myers Squibb, MSD, Merck-Serono, Novartis, Pfizer, Roche-Genentech, Pierre Fabre, and Sanofi, outside the submitted work. Dr. van den Beuken-van Everdingen has nothing to disclose. Dr. Vieira has nothing to disclose. Dr. Zalaudek reports honoraria and advisory board and grants from Sanofi, Sun Pharma, Novartis, Galderma, Roche, Celgene, Almirall, Leofarma, Mylan, Difa Cooper, Cieffie Labs, La Roche Posay, Pierre Fabre. Dr. Eggermont reports over the last 5 years personal fees as a consultant advisor for Biocad, BioInvent, Bristol Myers Squibb (BMS), CatalyM, Ellipses, Glaxo Smith Kline (GSK), HalioDX, Incyte, IO Biotech, ISA Pharmaceuticals, Merck Sharpe & Dohme (MSD), Novartis, Pfizer, Polynoma, Regeneron, Sanofi, Sellas, SkylineDx. Dr. Grob reports personal fees for advisory board and as speaker from Amgen, Roche, GSK, Novartis, BMS, Pierre fabre, merck, Sanofi, Merck, Pfizer outside the submitted work.

References

